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Solvable potentials generated by SL(2,R) 

J Deenen 
Physique Nucleaire Theorique et Physique Mathematique, CP 229, Universitk Libre de 
Bruxelles, Boulevard du Triomphe, B-1050 Bruxelles, Belgium 

Received 8 August 1989 

Abstract. Canonical transformations are used to build realisations of SL(2,R) in terms 
of the basic quantum mechanical operators Q and P .  The results are used to construct 
solvable potentials in the framework of one-dimensional quantum mechanics. 

1. Introduction 

The purpose of this paper is to sketch a systematic search for exactly solvable potentials 
in one-dimensional quantum mechanics. Our approach will be based on Lie group 
theory. The question we ask is whether it is possible to write a Schrodinger equation 

into the form 

( h ( X , ,  ..., X n )  -&)lY) = o  

where h is a function of Lie group generators XI ,  ...,X,. Many well known problems can 
be written in this way. Either they are the Casimir operator (Sukumar 1986) or a linear 
combination of generators (Wybourne 1974). We want to be more general. Presented 
in such a manner, the problem is of course too wide; we need to introduce restrictions. 
These will be of two types. We can make restrictions on the function h in (1.2). In 
the following we will use at most quadratic functions of the generators XI,  ..., Xn. 
Another possible restriction concerns the choice of the Lie group or more precisely 
of its Lie algebra. In this paper we will use the special linear group SL(2,R), which 
is isomorphic to SU(1,l)  and is well known to have finite- and infinite-dimensional 
irreducible representations. In order to make the problems (1.1) and (1.2) equivalent, it 
is necessary to realise the generators of SL(2, R )  as functions of the canonical operators 
Q and P associated respectively with the position and impulsion of the particle. Here 
also we make a restriction, we only study the special cases where the Xi are linear 
or quadratic functions of the operator P ,  the reason being that the Schrodinger 
equation is quadratic in P .  Note that in the Schrodinger picture our generators will 
be differential operators of the first or second order. The case of linear generators 
in P and a quadratic function h has been already discussed by Turbiner (1988). We 
will use nonlinear canonical transformations (Mello and Moshinsky 1975) to reduce 
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the problem to a simpler form. In the section 2 we will give all details about the 
canonical transformations we will use. Section 3 is devoted to the construction of the 
generators of SL(2,R) with the above-mentioned restrictions. In section 4 we will be 
concerned with the study of an algebraic model like (1.2) and its connection with the 
usual problem (1.1). The next two sections are devoted to examples. Finally in the last 
section we give some conclusions and suggest some extensions of this work. 

2. Canonical transformations 

The canonical transformations we will use here are simple ones. They are related to 
a change of variables and functions. Our two basic operators Q and P are given 
respectively by q and -id/dq in the Schrodinger picture. The change of variable 
q = f ( q )  where f is a given function of q implies that the derivative is transformed 
into 

- 

d 1 d  
d q - f ' o d q '  
_ -  

In operator notation this last expression becomes 

Combined with Q = f(Q),  this defines a canonical transformation. It is indeed very 
easy to verify that the new operators Q and satisfy the same commutation relations 
as Q and P ,  [Q,P]  = i. Now we want to make our canonical transformation more 
general by including changes of functions. Again we go to the Schrodinger picture. A 
relation like 

-- 

where A is any linear operator, becomes 

Making the change of functions 

we get 

and the operator A is transformed into 2 given by 
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In particular, the basic operators Q and P become 

Combining (2.2) with (2.8), we finally obtain the canonical transformation we will use 
in the next section 

where f ( Q )  and g ( Q )  are arbitrary functions and U denotes the operator that represents 
this canonical transformation in the Hilbert space. 

3. Realisations of SL(2,R) 

The realisations of SL(2, R )  we want to discuss in this paper are of two types. Either the 
generators are linear or they are quadratic in P ,  which means that in the Schrodinger 
picture they appear as differential operators of the first or the second order. In both 
cases we will use the results of the preceding section in order to simplify the construction 
of the generators. The commutation rules of the generators of SL(2,R) are written as 

[TO, T i ]  = +Ti [T+, T-I = -2TO. (3.1) 

We now examine in detail the two special cases we are interested in. 

3.1, Linear case 

Let us show that the most general expression for the generators is obtained by applying 
the canonical transformation (2.9) to a particular case that we denote by Ti : 

Ti = U T , U - ’ .  (3.2) 

T O  = iQP - A. 

These special Ti are choosen so that To is equal to 
- 

(3.3) 

Note that this choice is completely arbitrary. Using (2.9) this gives 

(3.4) 

As f ( Q )  and g(Q) are arbitrary functions of Q, so also are the coefficients of the linear 
expression in P (3.4). This proves the validity of (3.2). We have now to build T+ and 
T -  by imposing commutation rules analogous to (3.1). A very obvious calculation 
yields 

f (Q) 
f ‘(Q) 

To = i-P + (if(Q)g(Q) -A.) .  

- 

- - 

T ,  = iQ’P -2i.Q T -  = iP. (3.5) 
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This is one of the usual realisations (Miller 1968) of SL(2,R). The generators r, and 
T -  can also be written in a more convenient form 
- 

If we now go to the general expression by using the canonical transformation (2.9) we 
obtain 

1 
T- = -(To +A) f ( Q )  

f ' ( Q )  f ( Q )  To = i-P + F ( Q )  T+ = f ( Q ) ( T o  -A) (3.7) 

where F ( Q )  = if (Q)g(Q)  - i.. The most general linear case depends thus on two 
arbitrary functions f ( Q )  and g(Q) ,  or any combination of them. The constant A is also 
arbitrary and is related to the Casimir operator 

C = T+T- + To - T;. (3.8) 

Replacing the operators by their expression (3.7), it is very easy to show that the 
Casimir operator C is a multiple of the unity operator 

C = -i(i + I)]. (3.9) 

3.2. Quadratic case 

We proceed in a similar way as for the linear case. The general expression for a 
generator will be taken to be 

Let us show that for one of the generators, To for instance, its general form can be 
obtained by applying (2.9) to a particular form. We choose 

- 
T o  = P ' +  V ( Q )  (3.1 1) 

where V(Q) is an arbitrary function of Q. Compared to (3.10) we thus impose cro(Q) = 1 
and Po(Q) = 0. This is possible because the canonical transformation (2.9) contains 
two arbitrary functions. We obtain indeed 

To = U ( P 2  + V ( Q ) ) U - '  

(3.12) 
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from which we deduce the system 

(3.13) 

. g‘(Q) 
f (Q) 

./o(Q) =g2(Q)  -1- + vCf(Q)) 

giving the link between the functions (rO(Q), Po(Q), yo(Q)) and the functions Cf(Q), 
g(Q), V(Q)). If we now take a general form similar to (3.10) for r, and r- 

- 

T ,  = g,(Q)P2 + P,(Q)P + 72(Q) (3.14) 

and combine this with To given by (3.11) in order to obey the commutation relations 
(3.1), we obtain (Lanik 1967) up to a translation 

T o  = P 2  + h Q *  + i.Q-* 

For the most general quadratic generators of SL(2, R )  this yields 

- - 
T ,  = P’ k iiQP k a - h Q 2  + i.Q-*. (3.15) 

To = U T o U - ’  

(3.16) 

Again there is an arbitrary constant 2 in the results. As in the linear case, it is associated 
with the Casimir operator (3.8). A very simple calculation shows that 

c = h ( 3  - 4 i . )~ .  (3.17) 

Note that the case 1. = 0 is a special well known case corresponding to the one- 
dimensional harmonic oscillator. In fact it is possible to define boson creation and 
annihilation operators 

-t a = - ( 1  1 ) - a =  z ( i Q + 2 i P ) .  1 
4 TQ-2 iP  (3.18) 

They obey the usual commutation rules [a,ii’] = 1 and allow us to write the generators 
T i  as 
- 

- - 
T -  = -;7iZ. (3.19) 1 - 

To = i(ata+ z )  T ,  = -:atat 
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The method used here shows that this decomposition of the generators of SL(2,R) 
is still valid for the general expression (3.16) provided that E. is equal to zero. The 
expressions are similar to (3.19) except that we have to drop the bars over the operators. 
When E. is different from zero this is no longer true. Nevertheless To can be written in 
a similar form by using two operators 2’ and 2 given by 

where c is a constant such that I. = c(c + 1). The operator To is then given by 

1 - 1 -t- 
T o  = TA A +  a - ic .  

(3.20) 

(3.21) 

This may play a role in connection with supersymmetry (Witten 1981). 

4. The algebraic model 

We now come to the central problem of this work. The algebraic model is written 
as (1.2) with all the above-mentioned restrictions. We suppose that the algebraic 
model can be solved using group theory. As equation (1.2) must be equivalent to a 
second-order differential equation (1. l), a sufficient condition would be to take a linear 
function h when the generators of SL(2, R) are quadratic in P and a quadratic function 
h when they are linear in P. This will be discussed in more details in the following 
subsections. 

4.1 .  Linear generators 

This case has already been discussed elsewhere (Turbiner 1988) from another point of 
view. For the function h in (1.2) we take the most general quadratic function of the 
generators Ti 

h = - 1  aij  Ti Tj + bi Ti (4.1) 
isj I 

where i and j take the values +, 0 and -. When we replace the generators Ti by their 
expression (3.7) we get 

h = u(Q)P2 + u(Q)P + w(Q) (4.2) 

with 

2 4Q) = -( -) f (Q) A(Q) 
f ’(Q) 

(4.3) 
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and where we use the notation 

If we want the eigenvalue problem 

( h  - &)IY) = 0 (4.5) 

to become a Schrodinger equation, we certainly have to impose u(Q) = 0 which means 
that we only take those realisations (3.7) of S L ( 2 , R )  for which 

The eigenvalue problem (4.5) is now written as 

(4.7) 

where there still remains one arbitrary function f ( Q ) .  Two possibilities may occur: 
u(Q)  is constant or it is not. In the first case the eigenvalues of the algebraic problem 
(4.5) remain eigenvalues for the ‘physical problem’ (4.7) up to a constant. This leads 
in general to an elliptic function for f ( Q ) ,  the solution of the following differential 
equation: 

A special interesting application will be discussed in the following subsection. In the 
second case, equation (4.7) must be interpreted as a Schrodinger equation with a 
potential 

depending on one parameter E.  This means that, by solving (4 .9 ,  we only get the null 
eigenvalue of the physical problem (4.7), but for a family of potentials. Examples of 
both cases are found in Turbiner (1988). 

4.2. Quadratic generators 

The algebraic model function h is here chosen as a general linear function of the 
generators 

h = aTo + bT+ + cT-. (4.10) 
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The replacement of the generators by their expression (3.16) leads again to the form 
(4.2) for h, but where u(Q), u(Q) and w(Q) are now given by 

i f (Q) 
2 f’(Q) 

+ (b  - C )  - - c(Q) = (a  + b + c)  
(4.1 1) 

As in the linear case, we will impose o(Q) = 0. This allows us to express g(Q) as a 
function of f(Q) 

g(Q) = -i -~ ft’(Q) +A( b - c  )f(Q)] 
[2V’(Q)12 4 a + b + c  

This last condition gives for w(Q) the new expression 

1 + i ( a  + b + c)- 

(4.12) 

(4.13) 

while u(Q) is not changed as it does not depend on g(Q). We see immediately that if 
we want a Schrodinger equation with a spectrum given by that of the algebraic model, 
that is to say if we restrict to the case of constant u(Q), we only get the trivial case 
corresponding to the harmonic oscillator. We have indeed f(Q) = Q up to a constant 
and thus 

QZ + i ( a  + b + c)Q-* 
1 (b-c)’ 

w(Q) = -( 16 a + b + c  (4.14) 

The only interesting case thus appears to be that where u(Q) is not a constant. The 
associated potential is then given by 

where we used, without loss of generality, the conditions a + b + c = 1 and b = c. This 
potential will be discussed more carefully in section 6. 
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5. Example 1 

The first example we discuss belongs to the linear case and concerns a special one- 
dimensional anharmonic potential containing terms in Q4 and Q6 : 

V ( Q )  = im2Q2 + $5Q4 + kqQ6. ( 5 . 1 )  

Flessas (1981) showed that one may find exact solutions of the Schrodinger equation 
associated with this potential if the coefficients fulfil some condition 

w2 + fi = 3 t 2 / 1 6 ~  (5.2) 

or 

o2 + 5m = 3 t 2 / 1 6 q  (5 .3 )  

depending on the parity. We will show now that this peculiar situation has a group 
theoretical foundation. For this, we have to go back to the general form of the 
potential in (4.7) and make some particular choice for the parameters. We also make 
the assumption that the irreducible representation (IR) we are concerned with is the 
one-dimensional representation i. = 0. In that case we are sure that the problem is 
exactly solvable because To has only one eigenvector I",) with eigenvalue zero and 
furthermore the action of the other generators is also equal to zero 

To~Yo)  = T+lY0) = T-[Yo)  = 0. (5.4) 

From this we deduce that whatever the choice we make for the parameters aij and bi 
in (4.1), the eigenvalue E of (4.5) is equal to zero in this IR. In order to get the potential 
(5 .1 ) ,  we assume that all the coefficients aij are equal to zero except a+0 = a and that 
the arbitrary function f ( Q )  is proportional to 1 /Q2 .  A very simple calculation gives for 
u(Q) and w(Q)  defined by (4.3), the following expressions: 

and for the potential (4.9) 

bo b+bo 1 b: V ( Q )  =-a + - - - + - 
a2 8Q2 2a2Q2 

- -Q2 2b- + yQ2 + 7 Q 2  b; + -Q bob- + f Q 6 .  b2 
a 2a a2 2a (5.6) 

Comparing this last expression with (5 .1 )  we see that they are identical if we impose 
b ,  = * f a .  For b, = ;a, the Schrodinger equation (4.7) becomes 

( f P 2  + ;m2Q2 + $ ( Q 4  + iqQ6 - E ) I Y )  = 0 (5.7) 

where 
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and 

(5.9) 

It is very easy to verify that U, q and 5 satisfy the condition (5.2). The realisation of 
SL(2,R) related to this problem is given by 

b 
2a 

E = L .  

(5.10) 

It is also possible to calculate the wavefunction. It is indeed the solution of TolYo) = 0. 
In the Schrodinger picture, this becomes 

and thus 

(5.1 1) 

(5.12) 

When b, = --;a, the analysis is similar. The Schrodinger equation (4.7) takes the same 
form as (5.7) but with 

and 
36 
2a 

E = A .  

Now w, 4 and ( obey (5.3) and the generators are 

(5.13) 

(5.14) 

(5.15) 

The wavefunction, the solution of a differential equation related to (5.15) and analogous 
to (5.11) is given by 

(5.16) 

It is clear that other results can be obtained for this kind of potential by looking, 
for example, to other finite-dimensional IR of SL(2,R) .  They correspond to integer or 
half-integer values of i. and lead to the diagonalisation of the matrix associated with 
the operator h (Leach 1984, Turbiner and Ushveridze 1987). 
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6. Example 2 

The second example is related to the quadratic generators. We have seen that the 
algebraic model (4.10) becomes a Schrodinger equation 

[if''+ v(Q)llW = 0 (6.1) 

where V ( Q )  is given by (4.15). With the choice of parameters (a  + b + c = 1 and b = c) 
made before, (1.2) can be written as 

where 1") is the same eigenfunction as in (6.1). Let us restrict our attention to the case 
of a discrete spectrum related to a discrete positive irreducible representation Dk+ for 
which the eigenvalues m of To are bound from below : 

m = k,k+ l , k + 2  , . . . .  (6.3) 

In that case the Casimir operator (3.8) is given by 

If we denote by Ikm) the eigenvectors of To, we may assume that 

(6.5) 
m=O 

Putting this expression of 1") in equation (6.2) leads to a three-term recursion that 
can be solved exactly as explained by Ojha (1986). Another method is based on tilted 
states (Wybourne 1974). To do this, we first introduce two operators 

by analogy with what is commonly done with the SU(2) group. Equation (6.2) can 
now be written as 

[(l - 2b) To + 2b Ti - E ] ~ Y )  = 0. (6.7) 

In order to solve this equation, we now perform a 'rotation' around the 2-axis. The 
generators To and T, become 

exp(i8T2) To exp(-i8T2) = cosh 8 To - sinh 0 T,  

exp(i8TJ T ,  exp(-i8T2) = cosh 8 TI - sinh 8 To 

and equation (6.7) is transformed into 

{[(l -2b)cosh8-2bsinh8]To+ [2bcosh8-(1 -2b)sinh8]T,}l*) = cl$) (6.9) 
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where I$) is given by 

IF) = exp(idT,)IY). 

If we now choose 8 so that the coefficient of T, vanishes, we have 

26 
tanhd = - 

1 - 2b 

and the equation (6.9) becomes 

J1-4b Tol'Y) = 

from which we deduce 

E = m = k + n  n = 0 , 1 , 2  , . . . .  Jm 

(6.10) 

(6.1 1)  

(6.12) 

(6.13) 

Let us come back to the physical problem (6.1). We see that this equation depends 
not only on the eigenvalue E of the algebraic model, but also on two parameters b and 
2, the last fixing the irreducible representation. We have already mentioned the case 
where E is the eigenvalue of the physical problem. This corresponds to the harmonic 
oscillator. The role of the eigenvalue can also be played by b or 3.. In all cases, this 
amounts to writing (4.15) as 

V(Q) = v(Q) - E .  (6.14) 

In the case where the role of the eigenvalue E is played by the term containing b, 
this means that f(Q)f'(Q) has to be a constant. In order to simplify the expressions, 
we choose the arbitrary constants of integration in such a way that f (Q)  = (to 
avoid negative values, we may assume that Q is related to the radial coordinate of a 
three-dimensional problem). Replacing this expression of f (Q) and the corresponding 
g(Q), given by (4.12), in the general expression for the generators (3.16), we get 

Q 2-314 3. - 3/4 
1 6 ' 7  1 6 ' 7  T, = 4QP2 - T2 = QP. (6.15) To = 4QP2 + - 

With this realisation of SL(2, R ) ,  equation (6.7) leads to 

E i . -3/4 ~ 1 -4b)  
IT) = 0. -p2 - - + ____ 

2 8Q 8Q2 128 
(6.16) 

This is the radial Schrodinger equation of the attractive Coulomb potential if Y(q) 
represents the radial wavefunction multiplied by q ,  4 8  is the charge of the particle, 
E = - (1  -4b)/128 is the energy and k2 - k = al.- & = 1(1+ 1)  is the centrifugal force. 
This last condition gives two values for k ,  k = -1 and k = I + 1.  We only keep k = I + 1 
that corresponds to bound states. The quantisation (6.13) yields 

(6.17) 
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In the case where the role of the eigenvalue E is played by i., this implies that f(Q)/f’(Q) 
is a constant. Among the solutions we choose f (Q)  = &e-Q/*. The generators of 
SL(2,R) are then given by 

eQ 1 +4i. e-Q T ,  = eQ - p  + -eQ- 1 +4i. -e-Q 1 T - - p  - - 1 

2 2 -  2 32 2 32 2 2 
eQ + - T o = - P  +- 

(6.18) 

and equation (6.7) becomes 

1 +4i. 1 -4b +- 32 2 
(6.19) 

This is the one-dimensional Morse potential (Berrondo and Palma 1980) if we define 
(1 -4b)/2 = D, E = 2 0  and E = -$(l +43.) = -$ - i k 2  + ik.  The quantisation (6.13) 
now yields 

f i = k + n  (6.20) 

which gives, if D is fixed, the possible irreducible representations Dk+. From this last 
relation we obtain the finite number of bound states 

E = -D + f i ( n  + - i ( n  + i12. (6.21) 

This completes the analysis and shows that the harmonic oscillator, the Coulomb 
potential and the Morse potential are three well known exactly solvable problems 
connected with the same type of realisations of SL(2, R). 

7. Conclusions 

In this paper we have analysed realisations of SL(2, R )  where the generators are linear 
or quadratic functions of P ,  and we have applied this to some algebraic models. It 
should be very interesting to generalise this analysis to higher polynomials in P .  The 
extension to the n-dimensional case should also be interesting to investigate. This 
is particularly adapted to the factorisation method (Infeld and Hull 1951) when we 
consider its group theoretical extension by adding an extra variable as proposed by 
Kaufman (1965). The analysis presented here can also be considered as a study of 
some boson representations of SL(2,R). It is indeed obvious to modify the results if 
we look for realisations of the form 

or 

where a and at  are usual boson operators. The recent results of Doebner et a1 (1989) 
belong to this class of boson representations. 
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